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Abstract

The analysis of soil contaminants contained in hazardous
waste sites is a multi-step process involving gathering soil
samples, creating gas chromatograms from the samples,
and analyzing the chromatograms for evidence of contami-
nants in the soil sample. Instrument faults occurring during
the creation of gas chromatograms may cause the chro-
matograms to be unanalyzable for contaminants. The au-
tomation of instrument fault diagnosis for gas chromatog-
raphy is addressed using expert network technology.

An expert network development and testing environment
has been fielded by a team of researchers at Florida State
University. This environment includes tools for building the
expert network, aids for automated knowledge acquisition,
and a training algorithm. An introduction to the design
and implementation of the intelligent system and techniques
for ascertaining when multiple reasoning pathways exist for
reaching a particular conclusion in the system are presented
in this paper.

1 Introduction

In building knowledge-based systems for real problems
such as fault analysis in gas chromatography, a variety of
methods for reasoning with uncertainty are useful. The rea-
soning techniques presented combine knowledge gathered
through traditional knowledge engineering with experts in
the field and data-driven techniques. The underlying form of
the system described is a hybrid intelligence system called an
expert network. This hybrid method incorporates rule-based
knowledge, training of weights in the rule-base using artifi-

cial neural network type techniques, and adaptive network
structure refinement [2] [6] [8]. The system successfully
recognizes faulty chromatograms from a variety of features
detected in the graph and further diagnoses the most likely
cause of instrument failure. This diagnosis is a critical part
of the overall task of automating contaminant analysis in
soil samples in an automated laboratory setting.

In this paper, we give a brief introduction to the design
and implementation of the intelligent system for machine
fault diagnosis and present techniques for ascertaining when
multiple reasoning pathways exist for reaching a particular
conclusion in the system.

2 Gas chromatogram fault diagnosis

The analysis of soil contaminants contained in hazardous
waste sites is a multi-step process involving gathering sam-
ples, creating gas chromatograms from the samples, and an-
alyzing the chromatograms for signals from contaminants.
Faulty chromatograms may be produced due to errors in
sample preparation or via a gas chromatography (GC) in-
strument fault. When performed by humans, the task of
detecting faulty chromatograms by eye is costly and prone
to misdiagnoses [5]. Automation of this task is the goal of
the research reported here.

To detect GC errors, or faults, which occur during anal-
ysis, experts typically examine the gas chromatogram of a
single sample for features, or symptoms, indicative of an
instrument failure or sample error. If a fault exists, the gas
chromatograph data may not be useful. Therefore, it is im-
portant that samples produced from a faulty GC system are
discovered with a high degree of certainty before the chro-
matograms are used. Attempts to automate this portion of



the analysis task reveal that the process human experts use
in determining machine fault is difficult for experts to artic-
ulate precisely. Several types of reasoning are used, and a
system built to automate this decision-making process must
be robust and adaptable.

Formalizing the representation and reasoning process
used in automated GC fault diagnoses has progressed
through several stages in our fielded system. First, a knowl-
edge table depicting relationships between each symptom
and fault was produced. Based on the knowledge table, a
hybrid system called an expert network was utilized for rea-
soning using the expert knowledge. The knowledge table
was then structurally refined to show how distinct subsets
of symptoms may lead to a single fault. Refinement of
the knowledge, both in the strength of connections between
entities in the table and in the structure of the knowledge,
has required the integration of several computational intel-
ligence paradigms with a synthesis of new techniques.

3 Knowledge table

Rule-based systems provide a natural format for repre-
senting the high-level reasoning that experts chromatogra-
phers use when they analyze a chromatogram for faults.
Early work to represent expert knowledge in GC fault di-
agnosis in a written form is described by Stillman and
Lahiri [7]. Their end result was a knowledge table relat-
ing symptoms to faults using True and False. If a symptom
is related to a fault, the entry for the symptom-fault pair con-
tains True. A False entry indicates the opposite relationship.
Otherwise, the entry is left blank.

This basic format was also used by an interdisciplinary
team comprised of scientists and engineers from Florida
State University, Los Alamos National Laboratory, Sandia
National Laboratory, Oak Ridge National Laboratory, and
Varian Chromatography Systems to create a more extensive
knowledge table for GC instruments of interest. The team
first identified a set of symptoms and faults related to GC ma-
chine fault diagnosis. The table built relates these symptoms
and faults to each other using a set of five semantic quali-
fiers: Always, Usually, Sometimes, Infrequently, and Never.
These qualifiers give the experts more freedom in express-
ing symptom-fault relationships. Additionally, a blank is
left in the knowledge table if no relationship exists between
the symptom and fault. A portion of the table for the faults
Contaminated Sample, Leaking Syringe, and Column Bleed
is presented in Figure 1. Using the knowledge table, one can
determine how each individual symptom affects the conclu-
sion of a fault. From Figure 1, it can be seen that for the
fault Contaminated Sample Rising Baseline and Peaks Out
Of Range appear Infrequently, No Peaks Never appears, and
Sensitivity Change Up, Sensitivity Change Down, Irregular
Baseline, High Noise, and Extra Peaks appear Sometimes.

The knowledge table created is used to create a system
for diagnosing GC faults. The system developed utilizes the
expert network hybrid technique, and an inference engine
described briefly below and in more detail elsewhere [6].

4 Reasoning from the knowledge table

4.1 Expert networks

An expert network is a hybrid of an expert system and
an artificial neural network [6]. While seemingly dissim-
ilar, these two techniques complement each other, and the
hybrid system is a more powerful tool than either one alone.
In expert networks, the nodes and the connections among
nodes are not only functional but also have semantic inter-
pretations.

As a basis, the rules of an expert system can be repre-
sented as nodes and connections in a digraph structure. Each
node represents an assertion from a rule. Rule antecedents
are joined to rule consequent nodes by connections with
a strength reflecting the certainty associated with the rule.
Assertions are represented uniquely as identifiable nodes in
the digraph. An example of the translation from a rule in an
expert system to an expert network is shown in Figure 2.

The weighted digraph structure forms the architecture of
the expert network. The additional features of an expert
system are incorporated to create a network useful in rea-
soning. The combining of evidence in an expert system is
represented as the combining functionof the expert network.
The activation function in the expert network is taken from
the firing function of the expert system inference engine.

Extracting explanations of conclusions reached by an ar-
tificial neural network can be difficult. However, because
of the representation based on expert knowledge, an ex-
planation facility can be built for expert networks. Expert
networks can also be shown to be logically equivalent to
any expert system. When represented as a network, how-
ever, the certainty factors of the expert system can be trained,
the architecture can be refined iteratively using data, and in
general, the system assumes a robust, adaptive facility that
allows it to evolve over time and with changing conditions.

4.2 Expert network for GC fault diagnosis

Using the knowledge represented in the knowledge ta-
ble created by the team of experts, an expert network was
developed [2]. The expert network for GC fault diagnosis
consists of four layers of nodes: Symptom, Filter, Com-
bination, and Fault. The translation of the entries for the
fault Contaminated Sample in the knowledge table shown
in Figure 1 to an expert network is shown in Figure 3.

In the Symptom layer for each fault, there is a single
node for each symptom with a non-blank qualifier for the
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Figure 1. Portion of knowledge table

ANDmorph is rod

compromised host

IF

THEN

TO THE SUBNETWORK

identity of the organism is pseudomonas
there is suggestive evidence (0.6) that the

0.6
pseudomonas

the morphology of the organism is rod AND

the patient is a compromised host

the stain of the organism is gramneg AND

stain is gramneg

Figure 2. The translation from an expert system rule to an expert network
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Figure 3. Portion of expert network for Contaminated Sample

fault. Nodes in the Symptom layer are then connected to a
node in the Filter layer. There are five types of Filter nodes;
one for each semantic qualifier. The Symptom-Filter node
pair corresponds to an entry in the knowledge table. Each
Filter node is then connected to a Combination node. A
Combination node gathers evidence from a set of symptoms
for a fault. Each Combination node is then connected to a
single Fault node. Each fault in the table is represented by
exactly one Fault node.

An additional Fault node is added for diagnosing when
no instrument fault has occurred. This “fault,” No Fault, is
represented by the symptom set consisting of all symptoms
connected to Filter nodes of type Never, corresponding to
the belief that a good gas chromatogram will show no symp-
toms.

A data file for a single sample chromatogram contains
the values for the symptom features detected in the gas
chromatogram for each symptom in the knowledge table.
These incoming values are produced by a signal processing
front-end to the expert network [4]. All samples have values
for all possible symptoms. Symptom values may range from
0.0 to 1.0. A value of -2.0 represents missing or unavailable
data, and its propagation through the network has no effect
on the Fault node values.

The symptom values are propagated through their corre-
sponding Symptom nodes to the appropriate Filter node. At
the Filter node, the value is multiplied by a positive factor
if the symptom should serve as positive evidence for the
fault and a negative factor if the symptom serves as negative

evidence. The result is then propagated through a weighted
connection to a Combination node. At the Combination
node, evidence for a symptom set is accumulated [2] and
passed to the Fault node. Fault nodes report the value of the
highest incoming Combination node. If only one symptom
set exists for the fault and therefore only one Combination
node, as in Figure 3, the value of the single Combination
node is reported. The probable cause of machine failure is
the Fault node with the highest value. The resulting network
can then be optimized through training procedures. After
training the network shows improved diagnostic abilities [2].

5 Multiple paths of reasoning

5.1 Introduction

The knowledge represented in the table formed by the
experts relates only how symptoms individually affect a
fault. Because no relationships between symptoms were
given, each fault was represented by a single symptom set
consisting of all symptoms for the fault with a semantic
qualifier.

A more realistic view of the knowledge shows that the
symptoms connected to a fault in the knowledge table often
appear in related groups or subsets, and different subsets
of the symptoms appear at different times. For example, a
severe case of Contaminated Sample may produce a chro-
matogram that looks quite different than a milder case. We
would like to design the expert network to detect Contami-



nated Sample at both levels, or anything in between, but this
type of knowledge is obscured somewhat in the table by use
of semantic qualifiers such as Sometimes. While the table
could have been further analyzed by human experts, and
the training examples further labeled as “Severe Contami-
nated Sample,” “Moderate Contaminated Sample,” etc., the
manual knowledge acquisition task becomes quickly unten-
able, with excessive amounts of “intelligent” pre-processing
needed before the system would work. Automation of this
refinement of the structure of the knowledge led to the fol-
lowing technique for discovering multiple paths of reasoning
directly from the data [1].

One set of multiple paths discovered from the data is
given in Figure 4, and is represented in expert network form
in Figure 5. By examining the network, one can see that a
path is one way of moving from a set of Symptom nodes to
a Fault node. Multiple paths of reasoning mean there are
multiple ways of moving from a set of Symptom nodes to a
Fault node. Note that the multiple paths are united in a single
Fault node for Contaminated Sample; the final evaluation of
the likelihood of Contaminated Sample is made by taking
the maximum of all values sent by Combination nodes to
Contaminated Sample.

Using an ART2 [3] based clustering technique, paths
of reasoning are discovered using available symptom data.
ART2 is an unsupervised clustering technique that does not
require a presumption of the number of categories into which
sample data points will fall. To separate a single symptom
set into paths of reasoning, an ART2 network is created and
trained for each fault. The individual networks cluster all
the sample data from a single fault. A probable path of
reasoning is then said to exist if two or more clusters of
sample data are created for a single fault.

The sample data for a single fault separated into clusters
is then used to determine the semantic qualifier entries in
the knowledge table for the new alternate paths of reason-
ing. NetMedic [8], developed by Timpany at Florida State
University, analyzes a sample data set to determine the se-
mantic qualifier associated with each symptom, finding the
frequency of occurrence for each symptom in a cluster, and
then suggesting connections for each symptom in a path.
For example, a symptom which has a positive value in all
sample data for a cluster will be proposed to have an Always
connection to that fault. The newly proposed paths are in-
corporated into the expert network after confirmation from
domain experts.

6 Results

Testing of the expert network for machine fault diagno-
sis illustrates the usefulness of the intelligent system. The
networkwas tested on 667 sample data files taken from chro-
matograms showing one of twelve possible faults. Before

training, the network correctly diagnoses 475 faults (71.2%).
Using a training set of 166 randomly chosen samples, the
network correctly diagnoses 624 (93.6%) of the complete
sample set. The Table 1 shows the results of the expert net-
work with multiple paths of reasoning when trained on all
667 sample data files.

7 Conclusions

Fielding a system to deal with real expert knowledge
and real data is a challenge which draws upon a variety of
representation and reasoning methods to be effective. In
this paper, we consider several methods used in the knowl-
edge engineering phase with experts in gas chromatogram
analysis. A knowledge table representing the relationships
between symptoms and faults is given and an expert network
solution for this table is shown, allowing reasoning based on
the knowledge table. The knowledge table representation is
expanded to allow for multiple paths of reasoning and the
diagnosis of no fault data. Automation of this complex diag-
nosis task is shown to be approachable using this synthesis
of techniques with data-driven discovery complementing the
traditional knowledge engineering methods. Extension of
this methodology to other diagnosis tasks, especially those
with apparently ambiguous knowledge bases and noisy real
world data, is evident.
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Table 1. Performance of expert network with multiple paths of reasoning

Number Correct
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Fault of Samples Training Training
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Leaking Septum 43 23 37
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Sample Too Concentrated 43 42 43
No Carrier Gas 47 6 47
No Fault 126 113 125
Total 667 475 638

71.2% 95.7%
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